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1.0 INTRODUCTION 

Solution of the partial differential equations of fluid motion by finite-difference 
techniques requircs that the computational domain and dependent variables be represented 
on a network of discrete points. The distribution of these points is influenced by the choice 
of the coordinate system, the order of the numerical approximation, and the location of 
strong geometric and flow-field gradients. Typically, body-fitted, curvilinear coordiaate 
systems are used t a  simplify the application of boundary conditions. Construction of grids 
with the requisite smoothness and point clustering remains one of the most nettlesome tasks 
associated with the solution of the equations of fluid motion. This is especially true for 
three-dimensional (3-D) configurations as the effort required to generate an acceptable mesh 
increases rapidly with increasing geometric complexity and quickly becomes prohibitive. The 
considerable effort (e.g.. Refs. 1 throagh 4) that has been devoted to the development of 
reliable methods to mitigate these difficulties mzy be broadly put into two groups, ( I )  
domain-decomposition and (2) grid-adapting methods. 

Domain-decomposition techniques subdivide the computational domain into simpler 
subdomains which admit a more easily constructed mesh. Several strategies have been 
explored to subdivide the domain and establish communications among the subdomains. 
One group of approaches, the grid-patching or zonal methods, uses common or shared 
boundaries and another uses embedded or overset grids to subdivide the domain. The work 
cf Rubbert and Lee (Ref. 5 )  and Lee (Ref. 6) is typical of the methods which construct a 
ghbai me,h from subdomains which share common boundaries. They generate a global 
mesh by so!ving grid-geneiation equations on all subdomains +nultaneously and by 
requiring that the grid lines be continuous across sub ' >main boundaries. A difficulty with 
this approach is that irregularities which occur in corners and along boundaries impose 
constraints on the algorithm used to solve the flow equations. Lasinski et al. (Ref. 7) take an 
alternate approach and solve for the flow field on each subdomain separately with 
communication among the grids established by the transfer of boundary data. In their 
approach, the patches overlap one poin' with common points on the boundary to obviate 
interpolation for boundary data. Hessenius and Pulliam (Ref. 8) have nodified the 
approach of Ref. 7 to allow characteristic boundary conditions to be applied at subdomain 
boundaries. Rai (Ref. 9) further generalized the method to admit independent grids in each 
subdonain. Communication across grid boundaries is accomplished by means of special 
difference formulae at the boundaries which maintain conservation properties across the 
subdomains. Similar methods have been developed by Miki and Takagi (Ref. IO). Holst et 
al. (Ref. 11)  have applied the technique to luge 3-D grids. 

7 
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The grid-embedding or oversetting techniques do not require common boundaries 
between subdomains, but rather, a common or overlap region is required to provide the 
means of matching the solutions across boundary interfaces. The usual procedure uscs 
interpolation of embcdded boundaries to provide the necessary communication among the 
grids. Atta (Ref. 12) and Atta and Vadyak (Ref. 13) employed this approach to solve the 
full-potential equation in two and three dimensions. Their implementations used a separate 
implicit solution algorithm for each mesh. S:eger et al. (Ref. L), Benek et al. (Ref. IS), and 
Benek et al. (Ref. 16) developed a “chimera” scheme in two and three dimensions for the 
solution of both a linearized flow model and the Euler equations. Lombard and 
Venkatapathy (Refs. 17 and 18) use overset grids aligned with shock waves to produa highly 
resolved solutions of inlet flows. Fuchs (Ref. 19) applied the method to internal flows, and 
Rai (Ref. 20) uses a combination of patched and overset grids to solve rotor-stator 
interactions. Dougherty (Ref. 21) and Dougherty et al. (Ref. 22) have extezded the grid- 
embeC.iing technique to allow movement of embedded grids to follow timedependent 
motions. A closely related appro-ch developed by Wedan and South (Ref. 23) employs a 
globai Cartesian mesh in which the body Is  embedded. Grid points that lie within the body 
we located and automatically excluded from the solution process. 

The second technique, grid-adapting methods, causes the mesh to evolve with the 
solution of the flow equations. These methods seck to make the most efficient use of 
available mesh points, as well as to reduce the grid-generation effort by automatically 
clustering grid points to regions of high gradient. An advantage of the method is that the 
initial mesh does not need to anticipate accu:ately all regions of large flow gradients. There 
are several implementations of the method. Gnoffo (Ref. 24) models the mesh as a nctwork 
of springs whose constants are determined from the flow gradients. Nakahashi and Deiwert 
(Ref. 25) extend this idea to allow both linear and torsional springs and have applied the 
method to both steady and unsteady flow problems. Ghia et al. (Rzf. 26) coupi * the grid- 
evolution equation to the flow equation by requiring that the coefficient of the convec!’ve 
term in the flow model be minimized. Brackbill (Ref. 27) and Saltiman and Brac’ bill (Ref. 
28) use variational techniques to produce grid-evolution equations. Berger (Ret. 29) and 
Berger and Oliger (Ref. 30) developed a dynamic grid refinement technique which embeds 
successively finer grids to resolve flow gradients as they develop in the solution process. 
Unfortunately, the adaptive techniques have not been sufficiently developed to allow an 
assessment of I ueir applicability to general 3-D flows. 

This report documents the development of the chimera grid-embedding technique 
described in Refs. 14, 15, and 16. We chose the grid-embedding approach for solution of 
complex 3-D flows because it provides the flexibility to employ boundary-conforming grids 
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on component parts of the geometry, to refine the mesh selectively in regions u‘ interest, and 
to permit the solution of different flow models on the cdmponent grids. Because of its 
structural diversity, we call our implenientation a cbiinera scheme after the creature from 
Greek mythology which is compounded of incongruous parts. The method is a 
generalization of the versatile grid-patchinglzonal approach, and therefore, includes their 
advantages. Thus, advances made in the latter approach have an immediate counterpart in 
the chimera technique. Although the chimera approach allows different flaw models to be 
solved on each subdomain (e.g., Refs. 1 1  and 31). the present implementation is rev’ricted to 
the solution of the Euier eqliations on each grid. 

2.0 GENERAL DEKRIPTION 

Doma;;-decomposition techniqns have two principal elements, ( 1) decomposition of 
the computational domain into subdomains and (2) communication among the subdomains. 
In !he chimera approach, each subdomain requires a separate, independent grid generztion 
by any acceptable technique. Each subdomain is chosen to lessen the effort required to 
construct an acceptable mesh, and pcrhaps, to isolate a particular region of the flow (e.g., 
where viscous effects are important). As explained in Section 3.2, the chimera 
implementation increases the flexibility of subdomain selection by removing repions of a 
mesh common to an embedded grid. That is, an embedded me:h introduces an artificial 
boundary or “hole” into the mesh in which it is embedded. Because the regions interior to 
the hole do not enter into the solution process, intergrid co:,imunication is simplified since 
communication among the grids is restricted td the transfer of boundary data. Appropriate 
boundary values are interpolated from the mesh or mesnes in which the boundary is 
embedded. The chimera procedure naturally separates into two parts, (1) generation of the 
composite mesh and associated interpalation data and (2) solution of the flow model or 
models on the composite mesh. Each part is embodied in a separate computer code, 
PEGSIJS and XMER3D. PEGSUS takes the independently genarated component grids and 
the embedding structure as input and automatically constructs the composite mesh and 
interpolation data which are output. XMER3D takes the PEGSLJS output a1d flow 
specifications as input and solves the appropriate flow equations on each grid. 

3.0 PEGSUS 

.4utomatic generation of a composite mes!. from the input component grids requires 
PEGSUS to ( 1 )  establish the proper lines of communication among the grids through 
appropriate data structures, (2) construct holes within grids, (3) identify points within holes, 
(4) locate po im from which bcundary values can be interpoiated, and ( 5 )  evaluaie 
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interpolation parameters. In addition, PEGSUS performs consistency checks on 
interpolation data to assure its acceptability and constructs output files with the data 
structure used ic XMER3D. A structure chart of PEGSUS is given in Appendix A. 

3.1 EMBEJDING HIERARCHY 

Th: data structures required io manage the flow of data among the grids can become 
cumbersome unless some restriction is placed upon the . ’owable interactions. A hierarchical 
form follows naiurally from the embedding process; embeddec! grids occupy a lower level of 
the hierarchy than the grids in which they are embeddtd. Hierarchical forms also have a 
convenient mathematical representation as graphs. Such a representation greatly simplifies 
the development of data structures required to nxliipulate the transfer of data among the 
grids bv identifying the communication links that must be established. To facilitate the 
disc ,ssion, introduce the folIowing nomenclature: designate grids which comprise level I of 
the hierarchy as Gt,i, i = 2, ... In general, grids on a given level Q are embedded within 
grids on level I - 1, overlap other grids on level t‘, and have one or more grids on levels I + 1 
embedded within them. Such an arrangement is shown :-. Fig. 1. The figure includes the 
corresponuing graph (See Section 3.4). The lines connecting the : *ids indicate the intergrid 
communication links that must be supported by the data structures and suggest the 
complexity involved. 

It is not necessary to include all the interactions shown in Fig. 1. Very general 
configurations can be considered with a restricted ierarchy 9 * thc expense of additional 
labor in the construction of the component grid- The ir.Lcractions permitted by the 
hierarchy adopted for the work described in this report Ere shown in Fig. 2; grids on level I’ 
are constrained to be completely contained within a single grid on level 1’ - 1, and grids on 
level t’ mu. 5e disjoint. The major advantages of the adopted structure are the 
simplifications it provides in the construction of the data structures and in the limitatiom on 
the searches required to locate points in other grids which may serve for interpolation of 
boundary ‘ata. 

3.2 HOLE GENERATION 

Because each component mesh is generaied independently, complications frequently 
arise when the grids are embedded. For exaEple, points of an enclosing rhdesh, GI.,,, may be 
found to lie within a solid boundary contained within an embedded g:id, GI+ Such points 
lie out of the computational domain and must he excluded froiz the solutim process. In 
addition, a large nwnber of points must be: interpolated if every point common to G,,,i and 
GI+ I,j (Le., GI+ 1,j n Gl,i) is to be updated. Lombard and Venkatapathy (Ref. 17) found that 
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such extensive interpolation can dqrade global accuracy when there is a considerable 
difference in mesh cell size (Le. spatial resolution) between the grids Gj-i and GI. I.,.  To 
avoid such <omplications, only the boundary of each embedded grid is updated; the points 
of Gi.i contained within a subregion of Gc + I., are excluded from the solution on G,,i. Thus, 
the embedued mesh, G,. - I., ifiirodcce an artificial boundary or “hole” into G ,  .,. The only 
computational requirement is that there remains a sufficient overlap (Le., points in 
G,.! f l  Gi + and exterior to the hole) to support an interpolation for the outer boundary of 
G, - I., from points in Gi.i (Fig. 3). Similarly, the overlap must be sufficient to allow the hole 
boundary in GI-, to be interpolated from points in Gi I.,. .4 minimum overlap esists that is 
dependent on the type of interpolation uscd. 

A hole is constructed as follows: a surface. C, is introduced into Gi-i. In gcneral, the 
surface encloses solid boundaries contained within th, embedded grid Gi + I.! and serves as 
an initial hole boundary. Whenever boundary-conforming compcnent grids are employed, 
the simplest choice for C is a level surface of G, + I.,. A search of Gc.; locates points interior 
to C. These points 2re “marked” for future reference by changing the value of an integer 
array, [BLANK, corresponding LO these points, from 1 to 0. 

Figure 4 illustrates the details of the search procedure in twc dimensims. The procedure 
is as follows: ( I )  Define the initial hole boundary by a level curve in G, . (Fig. Sa). (2) 
Construct outward normals, 6, at each point, P,, defining C (Fig. 4b). (3) Determine a 
temporary origin, say Po, located within C by averaging the coordinatm. (4) Define a 
“search” circle about Po with radius Rm,, where R,a, is the maxin~uni distance from P,? to 
points on C (Fig. 4 ~ ) .  ( 5 )  Test the magnitude of 6 the position vector relative to Po, for eve!., 
point P of G,. , .  I f  1 r I I R,,,. P lie5 outside the search circle and hence need not be 
considered further. Wherwcr I r , < R,,,, P fails within rhe scarch circle and additional 
testins i5 required. (61 Coinpute N R, \there :k I., the outward normal at :he point P, on C 
closesr IO P. and R, is the position vector to P from P, (Fig. 4). I f  N R, 2 0. P is outside 
C; if RP < 0, P is inside c‘ and IBLANK corresponding to this point is set to C. 

- 
- -  - 

- - -  

The points of GjSi whhir, the hole are excluded from the solution and are not usable as 
boundary points. Therefore, additional points of Gj.1 are identified as hole-boundary or 
fringe points. Values of the unknowns at these boundary points wi!l be interpolated from the 
embedded mesh, GI + I . j .  The ooundary points are constructed from points in GI ., which are 
not hole points but which have nearest neighbors that are. Figure 5 illustrates the boundary 
construction. The procedure is to examine the nearest neighbors (Fig. 5 )  f each point, P, 
in Gt,i at which IBLANF = 1 .  I f  a neighbor is a hole point, P is a boundary point. The 
indws of the fringe points are added tc a list of boundary points which will require interpolated 
data. The boundary point is also temporarily “marked” by setting the value of IBLANK 
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to 2 nonpositive number which PEGSUS assodates with Gt+ 1 j- Once all the hole boundaries 
in Gci arc constructed, the fringe point indices are added to a list of boundary points which 
will require interpolated data. (Refer to  Appendix B for details of the associated data 
structures.) To simplify the logic of XMER3D, the values of IBLANK corresponding to  the 
boundary points arc reset to 0. 

The primary function of the hole or artificial boundary iniroduced into a mesh, Gi.i. by 
an embedded mesh, Gl+l.,, is to exclude a region of Glmi which mav fall within solid 
h d a r i e s  contained in Gr+ 1.j- It is possible for the reverse condition to exist. A region of 
the mesh GI + Ij  may fall within solid boundaries of Gf.i. A two-dimensional (2-D) example is 
given in Fig. 6. Because the mesh about Body 2 overlaps Body 1 in mesh Gc.i in which it is 
embedded, a region of Gr + I j  about Body 1 must be excluded from the solution cn  Gj I.i. 

The procedure for constructing such a hole boundary is similar to that described ahove. The 
examples of the chimera scheme given in this report avoid such complications. Ihe  
interested reader is directed io Refs. 21 and 22 for examples which include hales induced in 
embedded grids. 

3 3  IMERPOLATION 

As the separate grids are to be treated as independent entities, boundary conditions must 
be supplied to each. The hundary  conditions of the differential equations which model the 
flow provide data only at the boundaries of the computational domain. Thus, other da:a 
must be obtained for the subdomaill boundaries w5ich are not coincident with those of the 
computational domain. Because the subdomain boundaries typically lie in the in!erior of the 
computational domain where the differential equaiions are valid, it seems appropriate that 
the solution of these equations should provide the necessiuy boundary data. There are 
currently several approaches (e.g., Reis. IS, 16, 20, 29, and 31) io obtain these data. bct all 
involve some form of interpolation o f  data in one mesh to provide necessary data to 
another. 

Experiznce with a 2-D application of the chimera grid-embedding scheme (Ref. IS) 
indicates that difficulties can arise when a shock crosses grid boundaries. Figure 7 makes a 
comparison of pressure distributions obtained from solution of the Euler equctions about a 
supercritical airfoil on P single mesh and on a chimera grid. There is a mismatch in the 
solutions in the neighborhood of the expansion preceding the shock. Examination of tt,e 
Mach number contours of the chimera-grid soluiions (Fig. 8) reveals a considerable amount 
of mismatch and hash in the overlap region near the shocklgrid-boundary intersection. 
Several factors could contribute-the nonconservative nature of the Tavior series 
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interpcrlaiion; the reflecting boundary condhions impose3 at the overlap; and the meager 
extent of the overlap in the vicinity of the strock (Fig. 9). 

There is much disagreement about the proper interpolation method tu employ, especially 
for cases in which shock waves or other regions of high gradiects cross grid boundaries. The 
basis of concern is that interpolation xhemcs assume continuity of the interpolant. Regions 
of high gradient require approximatiors to the higher derivatives of the solution. terms 
which are typically neglected. As a result, several methods have bem developed which 
modify the numerical difference p r d u r e  applied at grid interfaces to maintain a proper 
representation of fluxes at the boundaries. The schemes proposed by Hesxnius and Pulliam 
(Ref. 8) and Rai (Ref. 9) are typical of such methods. Berg- (Ref. 32) developed a 
generalized difference scheme based upon the concept of a weak solution to the differential 
equations and has the advantzge that continuity of the interpolant is not required. The 
method was illustrated for the case of 2-D overkippiag grids. 

Several investigations have found factors other than the nonconstrvative interpolation to 
be important. Eberhardt (Ref. 33) examined shock/grid-boundary interactions between 
ernbedded grids. He found that a major factor in the interaction was the boundary 
conditions imposed at the overlap boundaries. Characteristic or nonreflecting boundary 
conditions reduced the mismatch at the shock. improved accuracy, and incrraxd the 
convagtncc rate for boul firs- and second-orda Taylor saia intapoh od. (!%nYar rcsuIts 
are rtported in Ref. 8.) Lombard and Varlratapa!hy (Ref. 17) found that a dispprity in 
spatial resolution can significantly affect the shocklgrid-boundary interaction. They also 
found the proximity of the boundaries (Le. overlap) to be impurtant, particularly whenever 
a significant difference in mesh resolution exists. 

Mastin and McConnaughey (Ref. 34) studied computational problems associated with 
interpolation on composite grids. They showed that bilinear interpolation in twa dimensions 
is superior to a Tayior series expansion when higher order derivztives of the solution are not 
important. Thej  also found that a two-cell overlap was sufficient tu provide accuraie 
interpolation whenever the cell sizes of the overlapped grids are romparahle. Simple 
computations (Ref. 35) of the flow variables interpolated across an oblique shock on a 
rectangular grid indicate that bilinear interpolation is superior to Taylor’s series 
interpolat ion. 

We employ a trilinear interpolation for the 3-D chimera scheme. This method provides 
an additional advantage of a more compact stencil. We also attempt to maitvain a four- to 
five-cell overlap between grid boundaries. The interpolarion scheme is coupled with 
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nonrcfkctive boun&ry conditions oil the grid boundaries. (For more de.& of the 
interpolation, see Appendix C.) However, it remains possibk that noncouscrvative effects 
may be important for the acuracy of solutions near shock/grid-boundary interactions. 
particularly in cases for which the spatial resolution between grids is comparable and in cases 
with strong shocks. 

3.4 DATA !XRUCTURES 

A chimera method requir the management of a large amount of grid and solution 
information. It is necessary to keep track of the storage locations of thc coordinates of each 
grid, solution data on each grid, interpolatior! points, interpolated data. interpolation 
stencils. points within hoks, and the relationship among the grids in the hierarchy. In 
additioa, the managanent function must be impkmcnttd in an automatic manna that is 
transparent to the user. Fortunatdy. the c o m m t a  scientists hz-e devdnpcd the required 
m a ~ a g ~ n c n f  techniques (e&, Refs. 36 and 37). Unfortunately, implementing t k  
techniques in FORTRAN is not always straightforward. 

Concepts which can be helpful for use with the data structure draw on ideas from the 
theory of graphs (e.g., Ref. 38). The graphical representation of the gridunbedding 
hitrarchy used in this report is shown in Fig. 2. Each grid Gr i is calkd a node of the graph. 
However. a node may contain niuch more information than just the grid coordinates. 
Additional information we have associated with each node includes grid-storage I d t i o n ;  
number of points in each coordinate direction; location of the grid in the embedding 
hierarchy; the precursor grid, GI - I.&; number of descendants, GI + I-,, J L 2. ...; location 
of dcsccndants; location of interpolation stencils; location of inteqolation coefficients; 
location of interpolated boundary data; and location of hole or excluded points. Most of 
these data can be stored in lists; connections among the data are made through the use of 
linked lists, and pointers (See Refs. 36 and 37). T, illustrate, consider the management of a 
single array containing spatial coordinates. The data are stored in a stacked or sequentiai 
manner. Thus, it is only necessary to store the position of the first element (a pointer) in each 
grid and the number of points in each coordinate direction on each grid (a linked list) to 
locate the coordinates of any point. Details of the data structures are contained in 
Appendix D. 

Other qpproache IO the data Structures are possible. For example, Noiton et al. (Ref. 
39) use a generalized grid structure similar to that used in finite-element methods. Each 
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computational cell (or grid point) is numbered in an arbitrary manner as opposed to the 
usual systematic ordering of points employed by finitedifference techniques. Instead, lists 
of the ind im of the points used in the finitedifference representation of each of the flow 
equations arc maintained. This procedure allows very different topologies to  be used on 
component grids and implicit interpolation for grid interfaces to be incorporated into the 
scheme. The major disadvantage of the method is the large storage overhead required for 
the lists of points in the difference s!encil. 

4.0 XMER3D 

The implementation of the chimera scheme must provide for the u x  of multiple flow 
models. The simplest choice of models is the Euler equations for inviscid flow and the 
Navier-Stokes equations for viscous flow. For purposes of demonstration of the method, we 
solve only the Euler equations. However, because of the choice of numerical algorithm, the 
extension to viscous flow is straightforward. The 3-D Euler equations are solved by the 
implicit, approximate factorization al3orithrn of Beam and Warming (Refs. 40 and 41). The 
implementation follows that of Steger (Ref. 42) and Pulliam and Stcger (Ref. 43). These 
formulations use explicit boundary conditions which provide a convenient method of 
imposing the correct boundary conditions on the various grids with minimal changes to the 
code. A version of the code (Benek, J. A. “Vectorized Implicit Algorithm for Solution of 
the Navier-Stokes Equations,,’ unpublished, 1979) vectorized for the Cray computer served 
as the basis for XMER3D (Appendixes D, E, and F). 

4.‘ i‘lrtE SOLUTION ALGORITHM AND GRID HOLES 

Grid points that belong to a hole must be excluded from the solution. Once the points 
have been located and identified (Le. IBLANK = 0). it is a simple matter to modify the 
i Yplicit algorithm. The modification required is illustrated by considering the algebraic 
system typical of numerical approximation of the flow equations. 

where A is the coefficient matrix assumed to be tridiagonal f r convenience, t$ is the vector 
of unknowns, and F is a known vector. Let 63, b4, and be elements belonging to a hole, 
and let f,, f,, and fs be values specified for 63.t$4, and 4s. The equations may be partitioned 
to isolate the hole 

I5 



AEDC-TR-8 5-64 
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The desired modification must allow the application of the standard tridiagonal solution 
algorithm and must not interfere with vcctorization. Thesc criteria may be satisfd if a3z. 
aw, 4 3 ,  as* and aM (Le. the off-diagonal elements) are set to zero; a33. &* and ass (the 
diagonal danents) are set to the identity; and F3* F4. and Fs arc -zet to f3* f4. and fs. The 
system takes the form ’ all alz o o o f 

az laz  a a  0 0 
; o  

...................................... 
: I  0 0 ;  

0 1 0  1 0 :  0 

._ ._  

\ 

...... 

0 

1 0  

1 0  

: o  

......... 
0 1 :  
.......... 

0 a6s: 

0 0 :  

.......... 
a66 a67 

ai6 an  

(3) 

The hole logic can be incorporated into the algorithm so that vcctorization is maintained. 
The array IBLANK is defined for each point cif the grid If a point is within a hole. IBLANK 
= 0; otherwise IBLANK = 1. A simple set of switches can be constructed that 
automatically multiply each row of the coefficient matrix. A, by IBLANK 

a- II = ai, IBLANKi i # j 

a.. = a.. IJ IBLAKKi + ( 1  - IBLANK,), i = j 
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The known vector, F, can similarly be modified as 

F; = Fi IBLANKi + ( I  - IBLANKi) fi 

For applications to the Beam and Warming algorithm, 4 corresponds to corrections to 
the latest approximation of the solution to the flow equation and 

Thu, the specified values of Fi in the holes are zero (Le., fi = 0. i = hole point). Since the 
d u e s  of 9 and are determined by interpolation from th: solution on another mesh, and 
since the modified algorithm automatically produces 43. t$,, & = 0, the interpolated 
boundary values 44j and +!j are automatically preserved. 

4.2 CONVERGENCE ACCELERATION 

Additional changes to the solution algorithm were made to improve the convergence 
rate. Thcse include modifications to the numerical dissipation terms and modification of the 
time step. The explicit dissipation term in Ref. 43 has the form 

where J is the Jacobian of the coordinate transformation; 6 = (Q. QU, QV. QW, e]/J is the 
vector of dependent variables; density, Q; momentum components (QU, QV. QW); total 
energy. e; and c is a user-supplied constant of qat). where At is the time step. Equation (5) 
was initially modified to 

where $ E =  I t x I  + I I y I  + I E Z I  (7a) 

and [, 9, and r are the curvilinear computational coordinates. The dissipation remains in a 
nonconservative form but is weighted by an approximation to the eigenvalues of the 
Jacobians of the flux terms (Ret's. 44 and 45). The approximation has the advantage of 
avoiding the evaluation of square roots. A similiar approximation to the implicit smoothing 
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tern of Ref. 43 preserves the block tridiagonal structure of the difference equations. The 
3-D sdutions presented here were obtained with that form of the smoothing. 

However, addi t iod experimentation with the smoothing terms showed that improved 
convergence rates can be obtained with the combined form 

whtre, e.g., 

and where 

The corresponding implicit term has the form 

+ [ c i ( J )  At + ~ \ c ( E  C j ) l  A€ J q - 
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where is the intermediate correction vector for the [ direction, and where e, es, and ci are 
u~er-~upplicd constants. Typically, e = 0.05, es = 1.0, and ei = 0.15. 

The second modification to Ref. 43 is !he addition of local time stepping. At each point 
the time increment, At, was replaced by a local time step, h, in the form 

where Atlim is a limiting value at At; generally, Atti,,, I 5. This form, suggested by Pulliam 
(Ref. 46). greatly speeds the convergence of single-mesh solutions. We employed it on the 
assumption that it would also enhance the convergence rate of the embedded grid as well. 
Holst et al. (Ref. 11) used Eq. (13) for the local time step. Flores (Ref. 47) presented 
computational results that show excellent convergence rates can be obtained. Fie also 
indicated that the diagonal form of the Beam and Warming algorithm implemented by 
Pulliam and Chaussee (Ref. 48) can achieve improved convergence with a fourth-order 
implicit smoothing term. A fourth-order, implicit term destroys the tridiagonal nature of the 
algorithm and produces a pentadiagWAAd form. This is not a severe penalty for the scalar 
inversions used in the diagonal algorithm. The tridiagona. r ~ r m  was retained here because 
the method will also be applied to time depcndcnt problems (e-g., Rzfs. 21 and U), and the 
diagonal form (Ref. 48) is not conservative in time. 

An alternate form for the local time step was investigated. The new form uses a more 
exact approximation of the local Courant number; it is 

CFL 
A 

h = -  (14; 

where CFL is the local Courant number which is a user-supplied input for each mesh, and 

where A,, A,, and A; have bcen defined previously. Equation (13) was found to provide the 
most consistent acceleration for arbitrary combinations of grids. For the cases tested, it was 
found thai CFL < 2.0. 

5.0 .4YPLICATION AND VERIFICATION 

The motivation for development of the chimera scheme is the zimplification of grid 
generation for cornjmational problems involving complex geometry. In particular, the 
requirement for routine computation of the effects of t'le wind tunnel environment on 
aerodynamic models at the AEDC (Ref. 49) has emphasized !he importance of a. simple 
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method for 3-D grid generation. In addition, there is a rquirement for computations of 
timedependent problems involving aerodynamic configurations in relative motion as 
exemplified in the space shuttle booster separation and store separation from fighter 
aircraft. Because of the complexity inherent in the grid-embedding process, particularly with 
the associated data structures, we decided to first test the general concepts in two 
dimensions. The lessons learned from this initial development step proved to be invaluable 
to the extension of the procedure to three dimensims. Therefore, the following first 
summarizes the 2-D rewlts and notes the lessons which were found to be significant for the 
development of the 3-D procedure. Then, the 3-D resuk,r arc jiiesented. 

- 5.1 tDAPPLICATIONS 

The chimera scheme was initially demonstrated in two dimensions using a linear, 
incompressible flow model (Ref. 14). The method was extended to soliition of the Euler 
equations about three, more complex geometric. (Ref. 15). The first was a circular cylinder 
which served as a check of the method since an a..dytic solution exists for the incompressible 
case. The second was a supercritical airfoil with a shock wave crossing grid boundaries. This 
example was used to explore possible difficulties &h a shocklgrid-boundary interaction. 
The third was a flapped supercritical airfoil which served to illustrate the method with a 
complex geometry. 

5.1.1 Circular Cylinder 

The flow about a circular cylinder in crossflow was computed for two Mach numbers. A 
two-level grid hierarchy was used (Fig. 10); the first level consisted of a 51 by 51 stretched 
Cartesian grid; and the stcond level was an 85 by 30 polar grid that contained the cylinder. 
The first calculation of cylinder surface pressure for M, = 0.25 was found to  agree very 
well with a potential solution with a Prandtl-Glauert compressibility correction and with an 
Euler solution on a 90 by 70 polar mesh as shown ir. Ref. 15. A second, supercritical, 
calculation was made for MoD = 0.50. The vortex phenomena described by Salas (Ref. 50) 
were observed as expected. The resulting solution was found to produce an asymmetric 
shedding of vortices. The shed vortices passed freely downstream through the polar grid 
boundary. Only the dispersion caused by the change in mesh resolution was noted. 

5.1.2 Airfoil 

The second yeonetry was the Dornier SKFl.1 supercritical airfoil (Ref. 51)  with a 
modified, sharp trailing edge geometry. Two Euler equations solutions were obtained for a 
Mach number of 0.76 and an angle of attack of 2.5 deg. Two grids were used. The first, a 
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105- by 70-point 0-mesh, provided a reference solution. The second consisted of a two-level 
embedded grid; the first level, a 105- by 28-point @mesh, the second, a 105- by &point 
@mesh (Fig. 9). All grids had a 5-point overlap at the trailing edge cut so that the effective 
number of points defining the airfoil was reduced to 100. The elliptic grid generator GRAPE 
(Ref. 52) was used to construct all grids. The reference and chimera grids had the same point 
distribution on the airfoil and along the far-field boundary. 

Both solutions were obtained with a global Courant number of 10 as defined by the 
smallest cell volume. Thus, the time steps between the component grids in the chimera 
scheme were different by a factor of 50. An ancillary result of the chimera solution was an 
improvement in convergence rate over the single-mesh solution by a facfw of 3. The 
mismatch in the solution-pressure coefficients was discussed in Section 3.3. The major point 
to be noted is that the shock location, and hcnce the surface pressure distribution, is affected 
by the shock/grid-boundary interaction. 

5.13 Maneuver Flnp 

Figure 11 illustrates the maneuver flap geometry that was created from the basic SKFl -1 
geometry (Ref. 51). Some liberties were taken with the geometry for purposes of mesh 
generation. Ths abrupt change in curvature at the flap location on the lower surface of the 
airfoil was reduced by arbitrarily rounding the corner; the finite thickness of the trailing 
edge of the airfoil at the flap location was eliminated in favor of a sharp trailing edge; and 
the flap retained the sharp trailing edge discussed in Section 5.1.2. 

A three-level grid hierarchy was employed. The first-level grid, GI1 ,  consisted of a 105- 
by 28-point 0-mesh; the second-level mesh, G21, was a 105- by &point 0-mesh which 
contained the airfoil; and the third-level grid, G ~ I ,  consisted of a 55- by 16-point 0-mesh 
which contained the flap. Each grid had a 5-point overlap at the cut tc avoid the use of an 
implicit periodic boundary condition. Grids Gll  and are shown in Fig. 12 without GJI;  
G3! is shown embedded irr GzI in Fig. 13. The grids were combindd so that the flap chord line 
formed a IO-deg angle, 0, with the chord lirie of the airfoil. The flap gap indicated in Fig. 13 
is approximatly 1.5 times larger than the experimental configuration. The larger gap greatly 
simplified construction of the flap mesh G J ~  because points of G31 were constrained to lic 
completely within \he ccmputational domain (i.e. outside the airfoil). 

Two solutions were obtained for supercritical conditions, Mo, = 0.6, a I: 3 deg, 13 = 10 

ieg, and M = 0.7, a = 3 deg, p = 10 deg. The angle of aitack, a, is measured relative tc the 
airfoil chord. Figures 14 and 15 present a comparison of the computations with experimental 
data (Ref. 51). Agreement is better for the M, = 0.6 condition although the pressure peaks 
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are overpredicted on Poth the airfoil and the flap. The overprediction of the suction peak 
causes a stronger shock which induces a downstream re-expansion. The effects of the 
modified lower surface geometry at about 70-percent chord are also visible. The M, = 0.7 
solution also overpredicts the expansix on the suction surface resulting in a stronger shock 
which is too far art. The shock locat:on at the trailing edge of the airfoil produces a higher 
pressure over the flap and reduces the predicted flap suction peak. The major cause of the 
disagreement with experiment is the lack of viscous effects in the computations which are 
known to be significant for supercritical airfoils. Nevertheless, the solutions demonstrate the 
ability of the method to simplify grid generation for complex geometries. 

The Mach number contours for the two solutions are presented in Figs. 16 a!; i 17. The 
M, = 9.6 condition (Fig. 16) Mach number contours pass smoothly through the grid 
boundaries. The shock is weak and does not cross the grid boundary. The M, = 0.7 Mach 
number contours (Fig. 17) show significant distortion of the shock at the grid boundaries. 
The resultant shock distortion at the grid interfaces is stronger for M, = 0.7 solution than 
for the M, = 0.6 solutior, {See Section 3.3). 

5.1.4 Conclusii Drawn from ZD Work 

The most important conclusion drawn from the 2-D work just described is that the 
chimera scheme is a viable technique for simplification of grid generation. The procedures 
for combining grids, locating overlap boundaries, constructing holes, identifying 
interpolation points, and manipulating complex data structures were demonstrated and 
found to be workable. 

Several problem areas were also identified. The restriction which limited hole formation 
to emuedded grids did not provide sufficient flexibility. The algorithm for constructing holes 
allowed the embedded grid GI + I , j  to induce a hole in mesh G,,i in which it was enbedded; 
however, Gl,i could not cause a similar hole to be formed in Gr + 1.j. This problem became 
evident with the construction of the flap mesh described in Section 5.1.3. The outer 
boundary of the flap mesh had to be distorted so that it would not intersect the airfoil. As 
a result, a compromise was reached in which the gap between the airfoil and flap was increased 
beyond that of the experiment so that a fla.p mesh with a reasonable outer boundary could 
be constructed. This feature became prohibitive for the moving mesh computations described 
ir. Ref. 21. For the Computations of Ref. 21 this restriction on hole formation was removed. 

As has been noted in Section 3.3, the shock/grid-boundary interaction was found to be 
much more troublesome than originally expected. The problem yew as the shock strength 
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increased. It was speculated that the nonconservative interpolation could be the cause of the 
difficdties. Although much effort has been devoted to kerifying this hypothesis, no 
definitive answer has been obtained. Some significant findings have come to light; the use of 
nonreflecting boundary conditions reduces the interaction (Ref. 33); the type of 
interpolation scheme and extent of the overlap region are important (Refs. 18, 32, 33. 34, 
and 35); and the relative difference in spatial resolution may a!so be very important (e.g., 
Refs. 18 and 35). 

The convergence rates of the solutions given in Section? 5.1.2 and 5.1.3 were SICY.  While 
the convergence rates were not of primary concern, it became obviou!, that sc ing must 
be done to make 3-D computatioas feasible. In Section 5.1.1, improvements ' . ergence 
rates were observed on the chimera grids. This result suggested that the differ, le sttps 
OB each grid were important for further accelerations. Therefore, the 3-D extension used 
local time stepping everywhere. 

5.2 3-D APPLICATIONS 

The 3-D capability of the chimera grid embedding is dunonstrated b.1 three example 
configurations. The first example is a generic three-body configuration consisting of three 
ellipsoids in a triangular arrangement. The second two are closely related wing/bdy and a 
wing/body/tail combination. The ernbedding hierarchy used in these examples is s h ~ w n  in 
Fig. 18. As in the 2-D case, !he hierarchy requires that embedded grids, GI., I,,, j = 1,2, ..., 
be contained completely within the envelopirg mesh, Gl,i. The examples illustrate the wide 
range of geometries that may be accommodated within the simple hierarchical framework. 
The wing/body and wing/body/tail configurations illustrate .he manner in which a complex 
gmmetry can be represented by adding component grids. All of the following solutions were 
obtained on the AEDC Cray Model XMP 112 computer. 

5.2.1 ChreeBody Configuration 

A generic, three-body configuration was considered to test the flexibility of the 
embedding hierarchy. The configuration consists of three ellipsoidal bodies in a triangukr 
arrangement (Fig. 19). The grids of the two smaller bodies have major and minor axes one- 
half of the larger; each ellipsoid has a length-to-maximum-diameter ratio of 10. The two 
smaller bodies are embedded in the mesh of the larger as indicated in Fig. 19. All the grids 
are spherical with a 5-point overlap in the 7 coordinate. The mesh o f  the large ellipsoid has 
26,250 points distributed 30 by 35 by 25 in the E ,  q ,  and directions; the meshes of the two 
smaller ellipsoids have 15,750 points distributed 30 by 35 by 15; and the compozite mesh has 
57,?50 points. All grids were constructed using a hyperbolic grid generator (Refs. 53 and 54). 
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533 Computation of Thrcc-BIJdy Confi@ation 

A computation war made fur M, = 0.8 and a = -2.0 deg using the complete mesh 
with no assumptions of symmetry. Thus, any asymmetries observed in the solution would be 
a result of an artificial asymmetry built k.0 the calculation procedure. hrface contours of 
Mach numbers are shown in Fig. 20. The coctours indicate that the fiow between the bodies 
is symmetrical. Therefore, it was concluded that the codes were functioning properly. 

5.2.3 Wing/Bdy 

The win:JLu&y configuration was designed to provide a simple configuration which 
could be used to assess wind tunnel wall interference (Ref. 55). It consists of a blunted ogive- 
cylinder i ;,elage and a midmounted wing (Fig. 21). The wing has a constant chord planform 
which is swept back at 30 deg with no twist or taper. Cross sections of the wing pardi4 to  the 
plane of symxretry are NACA-0012 airfoils. The windbody dimensions in units of fuselage 
cylinder radii are showa in Fig. 21. The figure includes the dimensions of the tail which has a 
consAmt chord planform swept back at 30 deg without twist or taper. The cqudions 
desciibing the fuselage geometry are 

- -  
(0.421 .- X)X 0 s x 5 2.42 

0.162 - 0.286~ - 0 .024~~  
1 .o 

2.42 C x S 4.11 

4.11 < x (16) 

The dimensionless model coordinates x and y are indicated in Fig. 21. The model has been 
tested in seveial wind tunnc' 7ver a wide range of Mach and Reynolds numbers; however, 
the experimental data are as yet unpublished. An assessment of their accuracy is underway. 

y =  1 r- 
5.2.4 Grids 

Thz 3-D grid-emwdding process is illustrated with the winglbody ccni;quration (See 
Fig. 18). An outer mesh, Fig. 22, enclosep the model. It is a warped, hemispherical shell 
whose polar axis is coincident with th:a fuselage centerline. The mesh was constructed by 
using the GRAPE code (Rtf. 52) to generate a mesh in a longitudinal plane. The plane was 
then mated about the polar axis. The r a s h  cxtendl. from 9 to 51 radii frori the fuselage and 
contains 19,740 points whir'i are distributed 47 by 21 by 20 in th: E ,  q ,  and directions (See 
Fig. 22). The fuselage mesh (Fig. 23) is also a warped hemispherical shell whose inner 
boundary is the fuselage surface. The grid contains 29,375 points distribu:tJ 47 by 25 by 25 
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and extends to 11.5 radii. Thus, the outer boundary of the fuseiage mesh overlaps the inner 
boundary of the outer mesh by 2.5 radii (about 4- to S-point overlap). The wing grid (Fig. 
24) is a warped cylindrical mesh whose axis is directed along the wing span. The end burface 
containing the wing root is coincident with the fuselage surface. The grid was constructed by 
using the GRAPE code (Ref. 52) to generate @mesh grids at se!,xted spanwise planes. The 
planar grids were then sheared onto cy?indrical surfaces whose radius was equal to the 
spawise location. The mesh contains 16,698 points distiibuted 66 by 23 by I I .  The [ 
coordinate (Fig. 24) contains a 5-point overlap at the trailing edge cut to eliminate the 
requirement for an implicit periodic solution; the 9 coordinate has IS spanwise surfaces 
defining the Uing. The composite mesh has a total of 65,313 points. 

Because the fuselage mesh has points which lie within the wing, ;Sri[s in the 
neighborhood ot the wing are removed from the fuselage gr;d. Figure 25 disglays the 
resulting hole bounaaij. Values of the dependent variables at points on the hole surfxe are 
obtained fram the wing mesh by trilinear interpoiation (See Section 3-3 and Appendix B). 

Three calcuations of the flow about the windbody were made, (1) a subcritical, 
compressible flow at M- = 0.6 and a = 0 deg. (2) a slightly supercritical flow at Mm = 0.75 
and a = 4 deg, and (3) a highly supercritical flow at M m  = 0.9 and a = 2 deg. In the 
comparisons sf comouted arid experimental data that follow, the p;essure coefficient. C,. is 
plotted as a function of the local dimensionless chord. W C ,  where X is aligned in planes 
parallel :G the plane of symmetry. Experimental data are available at three spanwise 
locations. In terms of the fraction of the semispm, Y/(b/2), the locations are 0.4,0.6, and 
0.9. Data are also available on the fuselage upper surface in the symmetry plbne and are 
presented as a funtion of the dimensionless fuselage length, X/D. where D = IO in. This 
scale was chosen to facilitate plotting. Note that the computational model continued the 
cylindrical portion of the fuselage to X/D = 1.4, whereas the experimental model ended at 
X/D = 1.2. N o  effoit was made to model the support structure. 

The subcritical condition, MI, = 0.6 and 01 = 0 dtg, was selected as an initial test of the 
3-D chimera technique. Figure 26 presents a compariscn of computed and experimental 
(Ref. 5 5 )  pressure coefficiem. The agreement is favorable, even near the tip. No effort was 
made to model the tip; the only coniputational requirement was that the grid be packed 
somewhat near the tip. Packing was achieved using hypcrbolic tangent spacing obtained 
from the method described in  Ref. 56. The comparisc? with the fuselage data is good except 
in the region where the tail is located (X/D z 1 .O;. In that region, the computation predicts 
a constant value of C, 3 0, ‘;hereas the data show the flow to CUz slightly accelerated. 
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n t e  slightly supercritical condition, MB = 0.75 and a = 4.0 deg. was investigated next. 
A ccmy;uison of the computed and experimental pressure data is made in Fig. 27. Again the 
comparison is encouraging. The mmputation overpredicts the suction pressure on the wing 
upper snrface. and the aisagrecment increases toward the tip. Much of this disparity is 
attributable to the increasing importance of viscous effects as :he flcw becomes 
supcrcritical. The fuselage data continue to be well predicted except near the tail location 
w!iere the disagreement is larger than in the subcritical ~casc. 

The supercritical condition was computed for MB = 0.9 and a = 2 deg. Figure 28 
compares the computation with the experimental data. The agreement is acceptable. The 
a,pmcnt near the wing tip remains surprisingly good; the disagrrement in the region of the 
tail has become much more significant. The fuselage data show the prexncc of a shock wave 
slightly downstream of the wing trailing edge. The computed shock surface is shcwn in red 
in Fig. h. 7% shock extends to the symmetry piane from a complex shock structure at the 
wing/fuscl;age junction. The ragged nature of the shock surface is caused by the plot 
program (Ref. 57). Figure 29a shows the curved structure of the shock from the root to the 
tip ( S u  Fig. 28). Because the shock is “painted*’ Last by the plot program. the lower surfam 
;hock also appears in Fig. 29a as the most forward patch cf :SI near the wing tip. Figure 29b 
shows the lower surface shock more clearly. The shock location on the wine/body surface 
can ais0 be . e n  in Fig. 30 which displays the surface grids of the fuselage and wing; the 
portion of the wing grid that is coincident with the fuselage is also shown. Mach number 
contours on the body su: face show the M = 1.0 (green) contour from the symmetry phnt 
down the fuselage to the wing root and across the wing. The figure indicates that a major 
portion of the upper wing surface is supersonic (Le. regiGn between the green contours). The 
expansion over the wing is suffiuiently sr.rong to induce a supercritical flow on the fuselage. 
Mach number contours in q = constant surfaces at the wing root, midspan. and tip are 
presented in Fig. 31. i n t  dotted lines ir. the figure represent the computational mesh and the 
solid lines are the Mach number contours. The shock (green. M = 1.0 contour) is smeared 
because of insufficient c!ustericg of grid points. The contours at the grid bmndaria  are as 
smcwth as the spatial resolution allows. 

Figure 32 displays Mach number contours on the outer boundary of the wing mesh. 
These contours are of interest as they resclt froin interpolations in the fuselage grid. The 
exchange of information between the grids results in a smooth set of contours. The sonic 
bubble on the wing (green contour) passes through the outer boundary. The shock surface 
(Fig. 29b) continues into the fuselage mesh where the differences ir. spatial resolution 
beiween the grids smear the shock. 
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The horizonla! tail was added to the wing/body and new grids were construaed using the 
teclrniqua describtd ir; Setxion 5.2.4. The outer grid has 37,000 points (74 by 25 by to); the 
fuselage mesh contains 77,700 (74 by 35 by 30); the wing mesh has 27,720 points (66 by 28 by 
lS) with 20 points in the 9 direction defining the wing surface; and the trzil contains 15,120 
points (56 by 18 by 15) witn 10 points in the q direction defining the tail surface. Thus, the 
composite grid consists of four component grids arv! has 157,540 points. The new grrds were 
used to test the behavior of the chimera scheme with large component grids. 

Because the fuselage mesh has points which lie within the wiw and tail. two hoks arc 
introduced into the fuselage grid in the neighborhood of the wing and tail. Figure 33 displays 
the resuiting hok boundaries. Values of the dependent variables on the hole surfacer must 
be interpolated from either the wing or t&! grids, as appropriate (Sec Section 3.3 and 
Appendix S}. 

The M- and Q = 2.0 deg condition was rerun for the mmplrtc configuration. A 
comparison of experimental and computed pressure coefficier!t, C,. as a function of the 
dimcnsionltss chord x/’C is prcxnred in fig. 34 in the same K M I ? - ~ ~  as Section 5.2.5. Data 
are available for only one xmispan location on the tail. Y/(bt/2) = 3.60. Figure 34 shows 
the computed resuits to be in excellent agreement with the experimental daia. The addition 
of tne tail had very little effect on the wing pressure distributions. The agmment with the 
fuselage data is significantly improved. However, the data show a slig!!tly more extensive 
expansion on the fuselage tharl is computed. The tail data and the Lomputation indicate that 
the 2-deg angle of attack is negated by the downwash from the wing. The data indicate the 
presence of a shock which is not ohserved in the calculation. Comparison of the solution for 
the wing/body configuration presented in Fig. 28 with that in Fig. 34 shows some 
discrepancies which are attributed to differenm in spatial resolution and convergence 
between the solutions. The large composite grid of the wing/body/tail(13 1,540 points) was 
not converged to the same degree as the winglbody grid i65.813 pints). a three order-of- 
magnitude reducticn of the residua! comoared to four. 

The fuselage data (Fig. 34) indicate the presencc of (. shock wave (See Sxtion 5.2.5).  The 
computed shock wake structure is shou.1 in red in Fig. 35. A :hock wave extends from the 
fuselage symmetry plane aror-nd the fuselage to the wing r o o t .  across the upper sirface of 
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tk wing to the wing tip, and around the tip to the lower surface as in Fii. 29. The shock in 
FQ. 35 is sharper and less ragged bcolux of the increased spatial resolution. A small shock 
can also be seen on the tail. This shock is weaker and does not extend to the tail mot MH 

does it cfoss the tail grid outer boundary. This is consistent with the effcctiw reduction of 
tht angle of attack at the tail noted in Fu. 34. Mach number contours on the full 
confisrruionarcshown in Fw. 36, which alsoctispkys the surface grids (compucwitb Fir. 
30). The Mach = 1.0 (green) contours can be t r a d  arcrund the fuxhge and across the 
wing. A large portion of the wing upper surface is supemi t id .  In comparison. only a small 
region concentrated near the tip is supercritical on the tail. Figure 37 presents Mach number 
contours in p = constant surfaces at the root. midspan. and tip for both the wing and tail. 
The small extent of the s u w ~ t i c a l  flow on the tail is evident (the gmn, M = 1.0 contour). 

Fire 38 dirplaZr Mach number contours on the outer boundaries of the wing and tail 
grids whictr d t  from quantities interpolated from the fuselage mesh. The information 
C X G . ! ~ C  among the grids results in smooth contours. The sonic bubbk over the wing (green 
contour) passes through the grid boundary, whereas the tail has no such interaction. 

6.0 CONCLUDING REMARYS 

A sct of computer codes hvt becn dcscribcd that impkmcnt 3-D grid-anbalding 
mhiqucs as a part of a W b k  solution coxept that we have alkd a chimera method. 

interpdation pin%, and manipulating complex data s~~ctu fcs .  The validity of tbe & 
was successfully danons:rated on sc~cral geomi%rics for inviscid flow. Extension of the 
muhm to indude viscous effects is underway. 

Tbt codes utilirc proccdurcs for combining grids, locating anbedded bouadana - m a  
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L - level in Hierarchy 
1 = Index Within Hierarchy 
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= GlL 

Figure 1. Hkrarchicrl structure of embedded grids. 
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The Hierarchy 
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Figure 2. Restricted hierarchy used in this report. 
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Figure 3. Overlap region between grids. 
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a. Initial bole boundary defined by level curve, C 

b. Construction of outwaro normals to C 
Figure 4. Illustration of hole ronstruction in two dimensions. 
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c. Tempwary origin (Po) and construction of search circle 

d. Construction of position vector R, and dot product test 
Figure 4. Concluded. 
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Fuarc 5. Fin81 hobboundary construction. 
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t 

Figure 7. Comparison of single-grid and cbimem-grid solu!ions 
for SKFl.l airfoil geometry for supcrcrirkal 
conditions, Mol = 0.76, Q = 2.5 deg. 
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Hierarchy for Wing/Body/Tail  

G 2 , 1  
F u s e l a g e  Grid  [ F i g .  23 ] 

Hierarchy for Three  E l l i p s o i d s  

Gi* i d  
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Fibarc 18. Grid-cmbedding bierarchi for 3-D ippkatioos. 
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Figure 19. Three-ellipsoid-body configuration and grids. 
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Figure 27. Winglbody solution, Mo, = 0.75, a = 4 dcg (open symbols, 
upper surface: solid sjmbols, lower surface). 
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APPENDIX A 
$XRUCTURE CHART FOR PECSUS 

The structure charts (Figs. A-I. A-2, and A-3) for the PEGSUS Code clarify the 
conceptual components of the program and the relationships among them. The conceph\al 
dancnts are arranged in a hierarchy with the most general components on the highest Icvels 
and the most s p c c i a l i  on the lowest. Whenever a specific element is accomplished in a 
single subroutine, it is identified on the structure chart by SXX. where XX is the number of 
an entry in Table A-: which identifies the subroutine by name. Thus, the charts also 
illrtrate the calling sequence of subroutines. Note that the charts may identify the same 
conccptwd element in more than one place. This repetition occurs for purposes of clarity. 
Similarly, namelist data inputs arc indicted as NLXX and are identified in Tabk A-2. For 
det;uls of the functions performed in each subroutine, see Appendix D; for details of the 
input data, see Appendix F. 

T.Mt A-1 Subtolltin N m  for PEGSUS Stnrchm Chrt 

N u m b  Subroutine Name 

SI 
sz 
s3 
s4 
ss 
s6 
s7 
sa 
s9 
s10 
SI 1 

SI2 
SI3 
SI4 
SI5 
SI6 
SI7 
SI8 
SI9 
s20 

INlTlA 
COMPOS 
OUTPUT 
WCOORD 
CHKPLT 

HOLE 
OUTER 
RGRlD 
TRANS 

CHKOUT 
CHKSTN 
CINDEX 
WIBLNK 
HDATA 
INTDAT 
H INTPT 
PLTHOL 
INITHB 
FRNGE 
PLTIBL 
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Number Subrouti : Name 

s2 I 
S22 
S23 
S24 
su 
S26 
S27 
S28 
S29 

HLOCAT 
SETFTR 
QUAD 

NEARPT 
NORK 4L 
ODATA 

OLOCAT 
OBOUND 

PLTOI 

T.Mt A-2 N u c l i s t  N m  fOr PECSL'S SWOCW~ Chrt 

Number Subroutine Name 

NLI HIERCY 
N U  SEARCH 
NL3 CKPLOT 
NL4 GRDPRM 
NLS HBOUN 
NL6 OBOUN 
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2 
3 
Y 
a - 
m 
VJ 

2 
Y a 
3 < 
e e 
E 
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APPENDIX B 
T lILINEAR I N T E ~ L A T I O N  

Trilinear interpolation can only be used on cubes. Unfortumtely. the typical cdl multing 
from grid generation in curvilinear coordinates is a warped hexahedron. Therzfore. each ceil 
containing a point at which a function value is to be interpolated must first be transformed 
to a cube (Fig. B-1). This is most easily accomplished by applying the same isoparametric 
form to the coordinates of the hexahedron as is used for the interpolation. This is 

where the q, i = 1. ... 8 are coefficients depending on the values of f at the vertices of the 
cube. and (E .  q. f )  are coordinates of the interpolated point, P. relative to a vertex of the 
cube. For convenience. we map to the unit cube (See Fa. El), so 

- - -  

The coefficients can easily be obtained from the values of fat the vertices of the cube. 
For example. at (t. q. f)  = (0.0. 0). f I = al, where f l  is the value of fat vmur 1 (See Fig. 
El). Repetition of this procedure leads to the system 

- - -  

f l  = al 

f2 = al + a2 

f3 = al + a2 + 9 3  + as 

fa = al + a3 

f 6 = a l  + a 2 + % + %  

f7 = a l  + a2 + a3 + ai + a? + ac, + al + aA 

f8 = al + a? + Q + a7 (B-3) 
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Solution for the ;i in terms of  the fi yields 

a2 = - f l  + f2 

a3 = - f l  + f4 

a5 = f l  - f i  + f, - f4 

a#j = fi - f2 - f, + fa 

a7 = f l  - f4 - f5 + fs 

38 = -f, + f2 - f3  + f, + fj - fs + f, - r's (8-4) 

We now identify the origin of the cube in interpolation space with the coordinates in 
physical space as 

-* 

f~ = fj;d,l 

The subscripts (j, k, I) corresponding to the vertices become 

f l  = fj.k.1 

f2 = f j +  1.k.l 

f3 = f j + l . k + l . l  

f4 = f j . k +  1,l 

f ~ .  = f j , t . :+ I 
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f6 = f j+ l .k . I+ I  

f7 = f j + l . k + l . l + l  

Thus, the interpolation stencil is specified by specifying (j.k.1) which simplif% the storage 
requirements. 

The mapping of the warped hexahedron to a cube using the same isoparametric mapping - - -  
as for f defines the transform from (6 9, b) to (X,Y,Z). Thus, 

where the constants, aj, b,, c,, j = 1, ...* 8 are determined by the corresponding values of the 
coordinates at the vertices in physical space according to Eq. (B-4). Equation (B-6) is valid 
for any point in the interior of the hexahedron. Thus, since the (X, Y, 2) coordinates of P 
are known, we have a system of equations for the coordinates of P in interpolation space. 
The above mapping must be one-to-one (Le., the inverse mapping must exist). The 
mathematical requirement is that the warped hexahedron be “convex” (i.e. not too 
warped). For our applications, this requirement should be implicitly satisfied since the 
transformation to computational space maps the warped hexahedrons to cubes and is one- 
t w n e .  

Solution for the (E, i, f )  corresponding to P is accomplished iteratively by applying 
Newton’s method. Let the system be written as - - _ _ _  

2 = G(L  7, = G(g) 

Let 

Newton’s method gives 
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for the iteration. where 

and 

M is the Jacobian of the isoparametric transformation. Hencc. M - 1 must exist as long as the 
mapping is one-to-one. Since M is 3 by 3, its inverse can be computed directly as 

where 

Typically, @ = (112, 1;2, 1/2) and the iteration converges to an rrns residual of in 
about five steps. The values of([, v ,  I) are stored in arrays DXI, DYI, and DZI in PEGSUS. 

- - -  

91 



AEDC-TR 85-64 

They are reordered for use in XiMER3D where they are called DXINT, DYINT, and 
DZINT. 

Isoparametric 
Mapping 

1 

Physical Space 

6 
5 

/ 
/ 

/ 
/ 

/ 
1 2 

Interpolation Space 

Figure R-1. Isopsrametric mapping used for trilinear interpolation. 
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APPENDIX C 
DATA !3TRUCTURKS 

PECSUS 

The Embedding Hierarchy 

The embedding hierarchy establishes how the component grids are allowed to interact. I: 
also determines the form of the data structure. The experience obtained from the 2-D 
chimera work (Refs. 15 and 21) shows that a less restrictive hierarchy will be reqGred. In 
particuhr, an embedded grid must be allowed to overlay solid boundaries in the grid in 
which it is embedded. This extension means that holes may be introduced into a grid, Gl,i, 
not only from the embedded mesh, GI + ,,j, but also from the mesh in which it is embedded, 
G1-1.k. Additic:rlally, grids on the same level of the hierarchy must be allowed to interact or 
become linked. These rcquirements were kept in mind when the data structures were 
designed for the 3-D implementation. Therefore, the data structures are described ;qr the 
mare generd u s e  but are illustrated f x  the restricted case. 

The restricted hierarchy described In Section 4.1 is illustrated in Fig. C-1 . The notation 
0, , is used to indicate the ith grid on level 1. We now introduce additional nomenclature that 
will be ielated to the data structure. The mesh G! is A precursor to its descendent grid 
GI, , j ,  which is embedded within it. For example, in Fig. C-1 mesh (322 had G31 and G33 as 
descendants and G I ,  as its precursol. T:: account for these relationships, the arrays 
PRECUR and DECFND are introduced. Tc. allow for a general structure of relationships 
amoiig the grids, :hq are ctored in an xbitrary order in memory and arc assigned a mesh 
number. 0n:y ti.e V’oot grid, G I , ,  has a predetermined number and it is one (1). The 
embedding hierarchy of Fig. C-1 w4h assigned mesh numbers is shown in Fig. C-2. The 
introdwtiori of the pointers also simplifies the construction of lists and pointers. 

Hierarchy Pointers 

Because each grid has a unique number, M, assigned to it, any  mesh is identified by a 
single number. For example, from Fig. C-2, 

A grid’s relationship to other grids in the hierarchy can be determined by specifying grids 
ernbedded within it (descendants) and the grid in which it is embedded (precursor). We 
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define arrays to store precursor and descendent mesh numbers. These are PRECUR(M) 
which contains the mesh number of grid M, NXEND(M) which stores the number of 
descendants of M, and DECEND(M,N) which holds the mesh number of the Nf$ descendant 
of M. The PRECUR array poi-ts to grids dhich are in lower leveis of the hierarchy and 
DECEND points to grids which are in tkip,her levels of the hieraxhy. 

The artesian coordinates are stored in single arrays X(I), Y(U, and Z(I) to minimite 
storage. A pointer, IXPNTI(,M), is used to store the value of the iadex i corresponding t c  
the first element of mesh M. The maximum values of the indices (j,k,l) are stored in hc: 
arrays MJMAX(M), MKMAX(M), ax.d ML,MAX(M). If the address cf ttL starting elements 
of the arrays X, Y, and Z are passed to subroutines via argumeic lists, the coordinates of any 
point in M are 

J c [ I ,  MJMAX(M)] 

K 11, MKMAX(M)] 1 X( J, y. 8 L) 

Y( J ,K, L) 

Z(J,K,L) ( L e 11, MLMAX(M)I 

The arrays X(I), Y(I), and Z(1) are ordered lists. 

Thus, the pointer IXPNTR becomes 

M = 2, IXPNTR(1) = 1 

2, IXPNTR(2) = MJMAX( l)*MKMAX(l)*MLMAX(l) + IXPNTR(1) 

3, IXPNTR(3) = MJMAX(2)*MKMAX(2)*MLMAX(2) + IXPNTR(2) 

Extension of the Hierarchy and Data Structure 

Even limited experience with the chimera scheme has shown the method to have a 
significant potential to simplify grid generation. This potential can be increased by an 
extension of the hierarchy to allow grids on the same level to intersect. Relaxation of the 
hole generatioa restriction to allow an embedded grid, GI, I , ,  to have a hole introduced h! : 
solid boundary in the precursor grid, G1,i requires only a slight change in the data struca*.i: 
and composite grid construction algorithm. 
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The increase in efficiency gained by allowing grids on the same level to intersect may be 
illustrated by the following cxample. The simple hierarchy shown in Fig. C-3 leads to a 
composite mesh such as that illustrated. The restriction to disjoint grids on tire same level 
requii-s the wing grid. G1,. io be embedded in the fuselage grid. The total number of points 
could be reduced by relaxing this restriction (Fig. C-4). The complications that can be 
expected from the extexion of the hierarchy are illusrrated in Fig. C4. They entail a hole 
crossing both grid boundziia and levels of the hierarchy. 

Thc modificatior. to the data stru :ture to accommodate overlapping grids iz the addition 
of a poin:er ;o grids on the same level of the hierarchy wnich intersect a given grid. We 
ir.troduce the pointer L1NKtM.h) tr) score mesh numbers of the N1h grids intersecting or 
linking mesh M. The total numb-r of such grids for mesh M is stored in the m y  
NLINh(hl!. A rirnillr stricture is introduced to account for the hoia-the pointer 
HO'..ES(M.P) ' 3  store mesh nuniben of the Nth grid which introduces a hole into M. and 
the arrhy Ni FS(?.¶) tu record rht total number of grids which cause hde; in M. The 
modificati2. -rovi?e the capibility to allow very general interactions among the grids. 

Once the data structlrre ?r modified. the dgorh-hn; for constructing (he composite mesh 
must be altertd. n e  rquirement is that sdditlonal 2carches be made of more grids to locate 
appro- Ate interpolational stencils. The above modifications are underway. 

The form of rhe data structure used for the boundary intcrpoktion dats depends upon 
how the data are colleted. The piocedure obtains hole data for a!! the grids and then 
generate-i outer-boui.daq &.ta for all the grids. The data structure must d a t e  the 
interpclated boundary paint in a mesh M with the correspmding stencil in mesh M 1. It must 
also associate the interpolation htencir in SI with the corifipczding bounaary point in mesh 
h12. 

The ir.di.xs of rhe interpola!d bounddi? p&nb and ii.2 arrcsjxcdi iq  intevohrion 
stenci: reference point (See .4ppendix B) are stored in separate lists for each mesh. For 
ximplicity. doub'r-dimexioned arrays are used, J9PT;M.I). KBPT(M.1). a7d LBPT( M.1) 
for boundary points and JI(h1.I). K I ( S 4 . l ) .  and Li(hl.1) for the stencil rzference p i n t .  
Tie arrays are fi!led as follow\: Vech 311 i \  searched for all inrzrpclation stencil for a 
bomda:, : A  71 in grid >I LVhcn the \ t end  is located. the stenci! reference p&t indices are 
stored ir. rhz :i>tk Jl(3ll.l). K ! ( > l l . l '  2nd 1 l . > l l . l )  and rhe interpolation coefticients (See 



AEOC-TR-85-64 

Appendix B) are stored in the lists DXI(M1,I). DY!!Ml,I), and DI.I(M1.1). For 
convenience, the boundary point indices of the point in M are stored in the lists 
JBPT(Ml,!), KBPT(Ml,I), and LBPT(M1,I). The lists organize the data by the mesh 
number of the grid which contains the interpolation stencil. The total number of boundary 
points interpolated from mesh M is I B P n M ) .  Thus, the lists J1, KI, LI DXI, DYI, and 
DZI for mesh M contair information obtained from mesh M, whereas tbe data in the lists 
JBi , KBl'T, and LBPT for M are indica of points which k long  to o t 'm grids. 

The collection aud data storage procedure automatically associate an interpolatioi. 
stencil to the proper boundary point by the mesh number of the stencil. However. additic:d 
pointers arc needed to sort the data according to the mesh n u m k r  of the boucA%ry point. 
Because PEGSUS first mllms the data for all the hole bour.daria and then all the Outer 
boundaries. the lists for each mesh are natbraUy Civided into sublists which cornpond to 
separate boundaries of other grids (Fig. C-5). An additional set of pointers identifm the 
sublists; IPNTR(M,N) poir,ts tc the first member, and NPNTR(h4.N) points to the last 
member of the N'h boundary intcrpolatpd from mesh M. The total number of sublists or 
s u b  for M is NSETS(M). figure C-5 illusmtcs how the pointers are related to the 
irmpolacon data lists. 

lhe  bookkeeping is completd by providing a m u n s  of isolating a particular hok 
boundary 3 i  outer boundary. Consider the systm I of embedded grids g k n  in Fi. C-1 and 
C-2. The grids are embedded according to the h;erarchy allowed by PEGS'JS. Each 
embedded grid is disjoint with respect to other grids on the same level of the hierarchy and 
contained completely within a single mesh on the next Iowa !eve1 of the hierarchy. Suppose 
we wish to examine the hole boundary in G1-, (M = 1) caud by G3z (M = S). according to 
the adopted s,orage convention, the indica o? the hole boundary are contained in a subset 
CT sublists of the points interpolated from mesh M = 5 [Thai is. G3: is the mesh from which 
d u e s  will bc interpolated for p i n t s  in G x  (M = 3) on the hole boundary c a d  by b33. 
T h ~ ~ .  all that is required is to locate the particular subset. say Pi. and the dati  will be 
coctined in the lisvs b2iw-n 

lPSTR(5.N) I I I NPNTR(5.N) 

We introduce a nec pointer .MHEMM,XlI) to serve as a cross index for the subsets of the 
mesh interpolxion lists. Suppose we uiish to locate the subset number. ISET. of :he hok- 
boundary data of points in Sl caused by the embedded grid. MI. then 

I f  
C-6. only the descendants of me\h %I need to be searched. Thus, 

dces nw introduce a hoie into '4, thcn ISET = 0. For the restricred hierarch) of Fig 
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MI = DECEND(M.N). N = I...,NDCEND(M) 

Figure C-6 illustrates the structure of MBH for the hierarchy of Fig. C-2. 

In the example, the required subsct Is 

SET = MHB(M.Mt) = N 

where M = 3, MI = 5. The desired boundary indi,m are located in the lists JBPT(M1.I). 
KBPT(M1.1). 1 RPT(hAI.1) between the indices 

iPN:R(MI.F! s 1 5 NPNTR(M1.N) 

A similar procedure is used t . locate outer-boundz? data for mesh M in the interpolation 
lists of the precursor mesh MI. The appropr;.atc iuolist in MI is 

ISET = MOB(M.MI; 

where MOB is the outer-boundary cross-index pointer. Note that no dterations zre requird 
to MHB and MOB for the extensions described in the SeiGon of this appmdix entitled 
“Extension of the Hierarchy and Data Structure.” 

The code XMER3D contain: the flow solver or A-crs .  it w:ws rhe eascutive functions 
of controlling input. 0utp.n. directing the solution oz a c h  ? a h  TO the aporopriare ilow 
scl.;er. and regulating the number of iterations performed on a mcsh * h e  proceeding to 
:he next. However. there are only two functions that XMER3D must bxrform on the 
interpolation data. The first is to update interpolation boundaries of a mesh; the second is to 
interpolat? data for the boundaries of embedded grids. Theretore. PEGSUS reorganizes the 
interpolation data for esch grid inro iuo cets of list\ for UW in XMER39.  

The first set contains the indice\ ot the intcrpoiarion \tencil reference wints. JI(1) .  l i l (  I). 
and LI(1) and corresponding interpolation cociticients. DNItI J, DYIiIj. arid DZI(1). (Note 
the change in notation.) There arc IIPNTS poinrs u hich require interpolaticn from mesh M. 
The second set holds the list 01  indice\ of poi..ts in \1 rhar ha\e \aluc\ interpolated fron: 
ottr-: . JB(I) ,  KB(1). and LB(ij.  Becaure aii #ne intrrpolatd \.ilucs arc rttainsd in 
mrmol, in a single l i , r .  QBC. 3 crow-indc\ lkr. i ! 4 C l l b .  I \  alw inc,udcd ~ r l  rhe  mend s:: of 
!is3. There are IBPNT5 points in thc sw-nd \et of h t \  tor each mesn and IlTOT points in 
QBC. Figure C-7 illurrrate. the striicture nf the l i \ t \  for me\h 31. 
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7t.t data management in XMER3D maintains the g d ,  interpolation Lists. and itpdate 
lists on separate external units. XMER3D reads the appropriate data into memory as 
required. The rilanagement strategy minimizes the storage required for solution at the 
expense of more 110 overhead. In order to reduce the complexity of the data management. 
all the interpolated values in the list QBC permanently reside in memory. To minimize the 
storage requirement, the in:crpohted values are stored contiguously (Fig. C-8). For each 
&d a pointer. IISPTR. points to the dement of QBC which corresponds to the first dement 
in the list for mesh M. Storage in the list is arranged such that once the a!ution is advancai 
on mcsh M and the required interpolations performed. the new vatna arc stow by grid ir? 
QEC (i.c. one s u m  or sublist for each mesh). The storage strategy requires ; k t  a 
mechaniun be provided which will allow the QBC i i t  to be sorted to :ou.;c the proper values 
to update the interpolated boundaries of M. The required Sorting infomation is supplitd by 
tbe liu IBC. Its function is to provide the index. I. in QBC wwhich corresponds to a given 
boundary point (3B.KB.l-B) in M. Thus. the data tequircd to updzte (JR,KB,LB) in M arc 
stored in QK(i)  (sce FG. C-8). 
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Hierarchy 

Level 1: 

Lwel 2: 

Level 3: 

Figure C-2. Embedding bimrcby rnd rssoCi.lcd rcrh rrmkrs. 
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Figure C-3. Example of composite mrsh for mtric~cd embedding burrrcb). 
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G1 1 

Inner Boundary of Gll 

Lole Boundary i n  G,, Caused by iring & A  

- Outer Boundary 

Figare C-4. E u r p k  of 8 composite lKEL for embedding hkrrrchy 
d lor i rg  iutersrcciag grids. 
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- - -t - - --• 
P I 

I PSTR( !.I. 1 1 - 

‘!PNTH( Y .  1 ) - 

Intc.r!>olat  ion Data 
L i s t s  for  bltssh. W 

I 
13ountiaI-y So. 1 

f r o m  Mesh. 
E1 t t t : ) l t ? )  

Y 2  (Hole) 

Ett. 

Figure C . 4 .  Pointers into interpolation data lists 
used in YC:GSc‘S. 
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Filum C-6. M8tnx strrclvn of cross-index a m ) .  MHB. 
for bok borduits. 
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index . 
1 

I IPNTS 

Interpolat ion List 

JI 
KI 
LI 

DX I 
DYI 
DZ I 

Update List 

Index 
~ 

1 

I BPTS 

JB 
KB 
LB i3C 

Fiure C-7. Structure of interpolation drh lists used in XMEIUD. 
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Update. I . i s t  
f o r  .II = 2 

JB. 
t' 1 c- . - 

.W 
L i s t  

I ISPTR 

i n  
QBC 

L I ITOT 

Interpolation 
L i s t s  

- 
ndex 

1 
U 

I I PhTS 

r1, etc. 
~~ 

lesh = 1 

. - - - -  
I ISPTR 

= 3  

I II'NTS 

Figure C-8. Summa0 of data structurc used in XMECWD. 
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APPENDIX L) 
SUBROUTINE DESCRIPTIONS 

N W M  

CHKOUT S10 

CHKPLT SS 

CHKSTN SI 1 

ClNDEX SI2 

COMPOS S2 

FRNGE SI9 

HDATA S14 

HINTPT SI6 

Checks the interpolation stencils to locate those which do not contain the 
interpolated point. Trilinear interpolation requires the interpolation 
coefficients to take values in the interval [O,l]. If any value is outside the 
interval by more than 6 (=  0.OOOl) the point is flagged. 

Plots specified surfaces of the input grids as a check. See namelist 
CKPLOT. 

Checks points in the 1ncrDolation stencil to determine if they contain 
interpolated data. For each point in the lists JI(MJ), KI(MJ), LI(M,I), 
and associated stencils of mesh M, sublists of JBPT(M1,I). KBPT(M1,I). 
and LBPT(M1,I) coresponding to  points in M are searched to locate 
common indices. 

Constructs the cross-index array 1BC and the update list of boundary 
points, :hen computes the total number of points IBPNTS pnd IiPNTS in 
the uplate and interpolation lists for each mesh. 

Super\.ixs the construction of the composite grid from the component 
grids. The hierarch) specifications and component grids arc input; the 
component grids transformed: c >mposite gfid points set; and the 
composite grid written to external storage for in?ut to XMER?D. 

Constructs the fringe or boundary about the hole introduced by grid M1 
(descendant in present hierarchy). The fringe points are identified by 
setting IBLANY = MI. 

Reads the namelist HBOUN which contains the specifications for the 
initial hole boundary for all grids. The asdumption is that each descendent 
mesh causes only one hole. 

Locates interpolation stencils in descendent mesh M I for hole-boundary 
point\ in M. Trilinear interpolation is assumed. 

t NOTE. Numbers corropond to \uhrouti.~*. numben in Tahlc ;\-I in 4ppendir A 
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H L W A T  Si1 Identifies the points of mesk 31 interior to the initial h?.e boundary 
introduced from d-ent mesh MI. interior points are located by 
forming dot product of R, and wherr. 6, is the positron vector from the 
nearest point on t'?? boundary to  a field point of mesh ;VI, and % is the 
corresponding surfac.: gutward unit cormal. If the dot product is positive, 
the point is outside the hole. The search is restricted to points within a 
sphere whose or&i is the mean value of the coordinates of the initial 
surface and r di.is equal to the m a x ~ r n ~ m  from the sphere origin to the 
farthest surface poiat (See Section 3.2). 

HOLE s6 Supervises the construction of holes and mmputation of the associated 
interpolation data for all grids. The construction procedure sets IBLANK 
= 0 at interior points and boundary points. 

INITHB S) 8 Constructs the initial hole boundary. The boundary coordinates are stored 
in 2-D arrays. 

INITIA S1 The initial values of the code parameters are set (also BLOCkDATA), and 
the title, hierarchy data in namelist H l E K Y .  and sear& limits in namelist 
SEARCH are read. Summaries of .he input values are written to URII 6. 

lNTDAT S15 Computes t he interpolation coefficients for trilinear interpolation using 
Newton's method. 

MAXMIN Determin-% the maximum and minimum values of component grid 
coordinates for plotting purpoxb. 

NEARPT S24 Locates the nearest point ir mesh 31 tu a \pecitied point. 

NEWTON Solves the trilr. ear interpolation equation\ for tnc cwrdinatcs 0 1  ihc 
interpolated poini in intqwlation space (i.e. E, i ,  F). t.or ilvail\, \et. 
Appe.idiu B. 

NL MHOL Counrs the total number 0 1  point, H ithin 11tdch (including I'i-iiigc p ~ u i ~ t ~ )  i i i  

the compositr grid. 

I07 
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NUMkr Subroutine Dcscriptioms 

OBOUN S28 Loads the atzr-grid boundary into 2-D arrays. 

ODATA S26 Reads the namclist O W U N D  which contains the specifications for all the 
component grid outer boundaries. 

OLOCAT S27 Locates interpolation points for the outer boundary of mtjh M by 
searching the precursor grid M1 for the nearest point cotre- ling to 

each boufidary point. 

OUTER S7 Supervises the computation of interpolation uata for the outer boundaries 
oi embedded grids. The outer-bouirdary spccifiitions are in3ut; the 
interpolatiw data computed; and point3 are set. 

OUTPUT S3 Supervises the final check on and output of interpolation data. I t  also 
writes all the final summaries for the composite grid and mak., estimates 
of storage parameters used in XMER3D. 

PLANE Plots a constant surface of J. K, or L depending upon the value of the flag 
ICASE, which is set in the calling routine. 

PLTHl Supervises the plotting of hole boundary and corresponding interpolation 
stencil reference points. 

PLTOI S2C Supervisc; the plotting of outer-bqundary and corresponding 
interp! .[ion stencil reference points. 

PLTHOL SI7 Plots the iriitial h d e  boundary in vesh M caused by the descendent mesh 
M l .  

PLTIBL SZO Plots the final hole boundary in mflrn M caused by all its descendam. The 
plc! is made in computational space. 

PLTINT Plots ihe hole boundary and interpolation point by connecting them wilh 
a line segment. 

I ox 
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Nambcr Subroutine Descriptions 

QUAD S23 Designates the titerpolation reference point by identifying the point 
(JMIN. KMIN, Lb IIN) of the cubL containing the interpolated point. The 
reference point selected based on a transform to the uniform 
computational space. Note that INTDAT performs additional checks to 
ensure that the cube specified by the reference point actually contain; :>e 
interpolated poinr (See Appendix B). 

RGRlD S8 Reads a grid from the external unit MESH + 10 and checks the consistency 
of the data input from namelist GRDPRXl with similar data on the 
external unit. 

SETPTR S22 Sets the grid pointers MHB, MOB, IPNTR, and NPNTR; loads the lists 
NSETS, IBPTS, JBPT, KBPT, LBP.-. JI, KI, LI, DXINT, DYINT, and 
DZINT. 

TRANS S9 Transforms an input component grid by translating, rotating, and scaling 
the coordinates. The rotations are assumed to be applied in the following 
order: z-auis (pitcn), y-axis (yaw), and x-axis (roll). It is very important to 
remember L,iat all transformations are with respect to the composite grid 
origin. 

WCOORD s4 Writes th.. composite grid coordinates to unit 1 in the format that is 
expected hv the flow solver, XMER3D. The records contain the s, y. z 
coordinar=s for each grid, one grid at a time. 

WIBLNK S13 Write, IBLANK to unit 2 in form expected by the flow solver, XMER3D. 
Each record will contain the IBLANK array for a single grid. 
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APPENDIX E 
GLOSSARY OF GLOBAL VARUBLES 

ALFA(3) 
BETA(3) 
G M ( 3 )  

T~mmfomu~ion Puuattcrs. They are rotation angles of new coordinate 
axis (composite) grid relative to  input axis system. 

ALFA - rotation about x-axis (deg) 
BETA - rotation about y-axis (deg) 
GAMA - rotation about z-axis (deg) 

DECEND(M,N) Hierarchy pram*. It is an integer pointer which points to  mesh 
number of the N'h descer.dant of mesh M. 

DXINT(M.1) 
DYINT(M,I) 
DZINT(M, I) 0.e. E, B.  f)- 

Intnpohtioll VluirMLs. They are lists which contain the interpolation 
coefficients for the trilinear interpolation of boundary points in mesh M - - -  

IBC(1) XMEIUD Bookkeeping. IBC is a cross-index list that points to storage 
locations of interpolated values for boundary points (See Appendix D). 
It connects lists of boundary-point indices to the corresponding 
interpolated value. 

IBMAX 
JBMAX 

Bouadnry surfscc VariaMcs. These variables specify the maximum 
number of points in each surface coordinate direction (See VNX, VNY, 
VNZ, JB, etc., and JBO, etc.). 

IBDIM 
JBDIM 

Code Parameters. These parameters specify the maximum allowable 
values for IBMAX and JBMAX. They are array dimensions. 

IBLANK(1) XMEIUD Bookkeeping. This is an arrav of flags for each grid point in 
each mesh. It takes the valuz of 1 for points exterior to the hole and 0 
for points within or on the boundary of a hole. Note that points interior 
to a hole are excluded from the solution on that mesh. Hole points that 
are boundary points have values of the flow variables interpolated from 
other grids. 
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Description V u h b k  

IBPNTS 

IBPWM) 

ICKPLT 

IDIM 

IFLAG(1) 

IFORMT 

XMEIUD Boowrceping. This variable specifies the total number of 
boundary points in mesh that must be updated from values interpolated 
in other grids. 

Interpotation Variable. IBPTS contains the total number of boundary 
points interpolated on mesh M (See JBPTS, DXINT, JI, etc.). 

Plot Parameter. (Logical) If this plot flag value is TRUE, check plots of 
grid coordinate surfaces are to  be made; if va' le is FALSE. no check 
plots are made (Also see JPLOTS, etc.. and NPLOTS). 

Code Parameter. This parameter specifies the maximum allowable 
number of interpolation points for each mesh. It is used as an array 
dimension. 

Work Array. It is used with outer boundary surface index lists JBO, 
KBO, LBO to sort boundary interpolation points for linked grids. 

laput Format Parameter. This parameter allows for multiple forms of 
the input format of component grids. Code currently has only one 
ailowable format, hence IFORMT = 1 (See subroutine RGRID). 

IHBTYP(M) Hok B a u m  Specifition Parameter. This parameter specifies the 
topology and type of initial hole boundar) to be specified. Permitted 
values are 

110-warped spherical surface given by L = constant and J along 
lines of longitude; 

120-warped hemisphere with base at J = JE; 

210-warped cylindrical surface with L = cowant  surface and K 
along the cylinder axis. End plaxs included; 

220-warped cylindrical surface with open end at K = KS; 

[Also see JHl(h1). etc., and subroutine INITHB.] 

1 1 1  
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Vuirbk Description 

IIEPTR 
IISPTR 

IIPNTS 

IITOT 

IOdTYP( M) 

IPNTR(M,N) 

IT0  

ITOTAL 

XMER3D Booldrct3ing. These are pointers into lists of interpolated 
boundary data. They correspond to last and first element of list QBC 
for data interpo!atec' in mesh M. 

XMER3D - . This variable specifies the number of 
boundary points interpolated from solution on mesh M. 

XMEIUD- - . It specifies the total number of points 
interpolated in the composite mesh. 

Outer-Boaedu). S p c c i f i i  Parameter. This parameter specifies the 
topology and type of outer-boundary surface for mesh M. Permissible 
values are 
1 10-warped spherical surface given by L = constant and J along lines 

of longitude; 

I S w a r p e d  hemisphere with base at J = J02; 

130-warped hemispherical surface with open base at J = J02; 

210-warped cylindrical surface with L = constant surface and K 
along the cylinder axis; end planes included; 

220-warped cylindrical surface with open end at K = KO1; 

[Also see JOl(M), etc., and subroutine OBOUND.] 

Interporptioa VprinMes. These are pointers into lists of interpolation 
stencil reference points, interpolation coefficients, and corresponding 
boundary-point lists. They specify the first and last index of points 
which belong to the N'h subset of the list. The points are members of 
grid M (See JBPT, etc.). 

Work Variable. It  is the number of points in the JNO, KNO, LNO, 
IBO, KBO. LBO arrays. 

Work Variable. I t  is the number of points in the JN, KN, LN arrays. 

112 
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Descripticn Variable 

ITRANS Transformation Parameter. (Logical) This parameter specifies whether 
or not a transformation of input grid coordinates is required. If the 
value is TRUE, a transform is required; if it is FALSE, no transform is 
needed (See ALFA, BETA, GAMA, XO, YO, Z, SCALE). 

IXPNTR(M) Bookeeping Parameter. This is a pointer into the grid and IBLANK 
arrays. It points to the location of the first element in mesh M. Values 
of the flow variables at these points will be interpolated from M (Also 
see J1, K1, L1, IPNTR, NPNTR, NSETS). 

JBO(1) 
k BO( I) 
1 BO( I) 

J BP': (M, I) 
E'3PT(M, I) 
LBPT(M, I) 

JDlM 
KDIM 
LDIM 

JHl(M) 
KHl(M) 
LHl(M) 
JHZ(M) 
KHZ(Mj 
L142(M) 

Work h y s .  They hold boundary-point indices of the current mesh. 

Work Arrays. They contain boundary-point indices of outer 
boundaries. They are used with IFLAG(1) and are necessary to deal 
with linked grid outer boundaries. 

Interpolation Variables. They are lists of boundary-point indices that 
belong to bomdaries of other grids which are embedded in mesh M. 
They specify the first and last index of the Nth s Jset of the list. The 
interpolation coefficients and corresponding boundary-poin. lists are 
DXINT, DYINT, DZINT, and JI, KI, LI. 

Code Parameters. They specify the maximum allowable vaiues of 
JMAX, KMAX, and LMAX. They are used as array dimensions. 

Hok Boundary Specification Parameters. These variables specify the 
beginning and ending values r?f grid coordinates which specify the initial 
hole boundary caused by mesh M. Specific values depend upon grid 
topology (See subroutine INITHB description, IHBTYP and input 
description, Appendix F). 

Interpolation Variable. They are lists of interpolation stencil reference 
indices. The points belong to mesh M (See JBPT, KBPT, LBPT, 
IPNTR, NPNTR, and NSETS). 

1 I3 
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Variabk Description 

JLHI(M,N) 
KLHl(M,N) 
LLHI(M,N) 
JLH2(M,N) 
KLH2(M,N) 
LLH2(M,N) 

Hok-Boundjuy S p c c i f i i h  Parameters. These variables specify the 
beginning and ending values of grid coordinates which specify the initial 
hole boundary used by the Nth grid linked with mesh M. Values depend 
upon grid topology (See JHl, etc., LHBYPM(M,N), an4 Appendix F.] 

Work Arrajs. They contain indices of the interpolation stencil reference 
point in the current grid, M (Also see JB, KB, LB). 

Outer-Boundary S p e e i f n h  Parameters. These variables specify the 
beginning and ending indices to be used in defining outer-grid 
boundaries. Values depend on grid topology (See description of 
subroutine OBOUND, IOBTYP, and Appendix F). 

JPLOT!M, N) Plot Specifiiation Parameters. These variables specify constant 
KPLOT(M,N) surfaces of J,  K,  or L to be plotted far the Nth plot of mesh M (See 
LPLOT( M ,N) ICKPLT and descriptioc of subroutine CHKPLT). 

JRS 1 (M) 
KRSl(M) 
LRSl(M) 
JRS2(M) 
KRS2( M) 
LRS?(M) 

Grid search parameters. They specify limiting values of grid indices to 
be used when bearching for interpolation points contained in mesh M. 
Defaults are maximum grid dimensions (See Appendix F). 

LHBTYP(M,M 1) Hde-Boundary Specificrrtion Parameter. This parameter specifies the 
initial hole-boundary type (See IHBTYP) for holes introduced into 
mesh M by the linked Mesh M1 (See JLHBl, etc.). 

MDlM Code Parameter. This paramete; specifies the maximum allowable 
number of comyonent grids. I t  is used as an array dimension. 
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Description Variabk 

MESHN 

MESHNO 

MHBS(M,Ml) 

MJMAX(M) 
MKMAX(M) 
MLMAX(M) 

MOBS(M,M 1) 

MPLOTS 

NDCEND(M) 

NLINK(M) 

NMESH 

NPLOTStM) 

Input Parameter. It is the mesh number assigned a priori to a 
component mesh. It is part of the data on the ext m a l  file containing 
the input grid. It serves as an internal chr .k 011 input data. 

lnput Parameter. It is the mesh number of the component grid whose 
parameters are contained in namelist GRDPRM. It is used as an 
internal check to verify the proper correspondence with the input 
component grid file. 

Bookkeeping Parameter. This pointer points to the subset number of 
the hole-boundary points of mcsh M caused by mesh M 1. In the present 
hierarchy, M is a descendent mesh (Also see NSET, IPNTR, NPNTR). 

Hierarchy Parameter.These parameters contain the number of points in 
the three coordinate directions ( t ,  9, f )  of each mesh M in the hierarchy 
(See JDIM, KDIM, LDIM). 

Bookkeeping Parameter. This is a pointer to tbe subset number of the 
outer-boundary points of mesh M which are interpolated from values in 
MI.  (Also, see IPNTR, NPNTR, and NSETS). 

Plot Paramere:. This counter records the total number of plots made 
during an execution of PEGSUS. 

t:hrarchy Parameter. This parameter contains the number of 
descendent grids of mesh M (See DCEND). 

Hierarchy Parameter. 1 his parameter specifies the number of grids 
linked to mesh M. 

Hierarchy Parameter. I t  specifies the total number of component grids 
in the composite mesh (See MDlM). 

Plot Parameter. This variable is the total number of check plots made 
for mesh M. 

I IS 
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Variabk Description 

NPNTS Hierarchy Parameter. This parameter is the total number of points in 
the composite grid. 

NSETS(M) BooWrctpirrg VnrirMe. This variable has a value equal to the total 
numb: of boundaries requiring interpolation that are embedded in 
mesh M. 

PRECU R( M) Hierarchy Parameter. It is a pointer to the mesh number of thc 
precursor grid of mesh M. Ii, the present hierarchy, each mesh can have 
only a single precursor. 

SCALE 

VNX(I*J) 
VNY( 1, J) 
VNZ( 1, J) 

XFAC 
YFAC 
ZFAC 

xo 
YO 
zo 

Tranformahioa Parameter. It is a multiplicative scaling factor for input 
component grids. 

Bwodary M a c e  VpriaMes. These are the outward unit normal vectors 
to the surface stored in XB, YB, ZB (Also see IBMAX and JBMAX). 

Bou- Surface Variables. These are the coordinates of the boundary 
surface (See IBMAX, JBMAX, and XB, etc.). 

Plot Parameters. They specify the plot viewpoints. 

Interpolation Variables (Work Arrays). They contain the interpolation 
coefficient data for points interpolated from values in mesh M. 

Transformation Parameters. These are the unscaled cqordinates for a 
translation of component grid coordinates. 

I16 
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APPENDIX F 
DESCRIPTION OF INPUT AND OUTPUT 

INTRODUCTION 

Input t c  PEGSUS takes the form of binary data (Le. the component grid data) and 
namelist input. This appendix details the formats required of the binary data, the namelists, 
associated variables, and their default values. 

BINARY FILE INPUT 

The default format for the component grid files is (IFORMT = 1 on unit number IUNIT 
= MESHN+ 10) 

Record Number Variable 

1 

2 

3 

MESHN 

JMAX, KMAX, LMAX 

(((X(J,K,L), J=1 ,  JMAX), K = l ,  KMAX), L = l ,  
LMAX), 

(((Y(J,K,L), J=1 ,  JMAX), K = l ,  KMAX), i = l ,  
EMAX), 

(((Z(J,K,L), J =  1 .  JMAX), K= 1 ,  KMAX), L =  1 ,  
LMAX) 

where MESHN is the mesh number assigned a priori. This number is arbitrary except for 
MESHN = 1 which must be the global mesh. JMAX, KMAX, and LMAX are the maximum 
values of the J ,  K,  and L indices (Le. the number of points in each coordinate direction). 
I hese data are input in subroutine RGRID. 

INPUT 

A schematic of the input data is given in Fig. F-1, and a detailed description is contained 
in the following subsections. The figure illustrates thc order of input and the subroutine in 
which it is read. 

I I 7  
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TITLE 

TITLE is read on a 10A8 format in subroutine INITIA. It is an 80-character description 
of the composite grid. 

HIERCY 

HIERCY is a namelist urd is read in INITIA. It contains the following parameters: 

DECEND (M,N) Mesh number of the Nth descendant of mesh M 
TYPE: INTEGER, Dimensions: MDIM x MDIM 
Default = 0.0 

LINK (M,N) Mesh number of the grid linked to mesh M (not 
wed), Dimensions: MDIM x MDIM 

MJMAX (M) 
MKMAX (M) 
MLMAX (M) Dimension: MDIM 

Number of points in J, K, and L 
coordinate directions for mesh M 

NDCEND (M) Number of descendants of mesh M 
Dimension: MDIM 
Default = 0 

NLINK (M) Number of grids linked to mesh M (not used) 
Dimension: MDIM 
Default = 0 

NMESH Number of component grids 
Default = 1 

PRECUR (!'e?) Mesh number of precursor of mcsh M 
Type: INTEGER, Dimension: MDIM 
Default = 0 

I IS 
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GRDPRM 

GRDPRM is a namelist which is read in RGRID. A separate GRDPRM namelist is 
required for each comDonent mesh. It contains the grid parameter specifications 

IEORMT Integer flag denoting the format of the component 
mesh input file; default and only acceptable 
current value is 1; this parameter allows multiple 
formats for binary grid files. 
Default: 1 

ITRANS 

ALFA(3) 
BETA(3) 
GAMA(3) 

xo 
YO 
zo 

SCALE 

MESHNO 

Specifies need to transform component mesh; 
acceptable transforms are translation, rotation, 
and scaling; NOTE: All transforms are referenced 
to the composite grid coordinates (See Appendix 
E) 
Type: LOGICAL 
Default: FALSE. (i.e. no transformation) 

The rotatian angles in degrees of each coordinate 
axis of input grid relative to composite grid; the 
angles are associated with the axis: ALFA/x-axis, 
BETA/y-axis, and GAMA/z-axis (See Appendix 

Default: 0.0 
Dimension: 3 

Ej  

The origin shift of input grid in the input 
(unscaled) coordinates (See Appendix E) 
Default: 0.0 

Multiplicative scale factor 
Default: 1.0 

Mesh number corresponding to data in GRDPRM; 
this riumber must match MESHN on component 
grid file 

I19 
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CKPLOT is a namelist which is read in subroutine CHKFLT. The namelist contains 
specifications for plotting coordinate surfaces of the component grids. The pamaeters are 

ICKPLT Flag specifying that checkplots are to be made 
Type: LOGICAL 
Default: .FALSE. no plots 

NPLOTS (M) 

JPLOT(M,N) 
KPLOT(M,N) 
LPLOT(M,N) 

XFAC 
YFAC 
ZFAC 

HBOUN 

Number of plots to  be made from mesh M 
Dimensifin: MDIM 
Default: 0 

A nonzero value specifies the surface to be plotted 
in the Nth plot from mesh M 
Only one coordinate may be nonzero for each plot 
Dimensions: MDIM A PLTDIM 
Default: 0 

Magpification factors for coordinates of the view 
point for the plots; iarge values provide less 
persnective 
Default: 1OOO.O 

HBOi .I is a namelist which is read in subroutine HDATA. It contains specifications for 
initial hole boundaries. They are 

IHBTYP (M) Flag specifying topology and type of initial hole 
boundary. Currently acceptab!e values are 

100--\karped spherical surface given by L 
= constant and J along lines of 
longitude: 

1 10--Warped hemispherical surface as 
above with base at JHZ(M); 
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JHl(M) 
KHl (M) 
LHl (M) 
JH2 (M) 
KH2 (M) 
LH2 (M) 

210-Waq~ed cylindrical surface given by 
L = constant and K along cylinder 
axis; both end surfaces are inciuded; 

220-Warped cylindrical surface as above 
with open end at K = KHI(M) 

Dimension: MDIM 
Default: 0 

Ranges of irtdiaz defining surface; those ending 
with I are initial value, and those ending with 2 are 
final value of index: their significance depends on 
IHBTYP (M); typical vdues are 
IHBTYP = 110 JHl(M) = 1 JHZ(M) = JMAX 

120KHI(M) = I KH2(M) 
= KMAX 

LHl(M) = 1 LHZ(M) = LO, 
LO < LMAX 

= 210 JHI(M) = 1 JH2(M) = JM.*X 
22OKHI(M) = K1 KHZ(M) = K2 

where K1, K2 [2,KMAX] and 
L2 e LMAX 

LHI(M) = 1 LH2(M) = L2 

NOTE: 1. The parameters JHI(M). etc., specify 
r F P  hole boundary caused by mesh M 
in its precursor grid M1; 

2. The 1irkc.d grid logic is not included; 

3. All the current boundaries can be put 
into a spherical surface coordinate. 

Dimension: MDIM 
Default: 0 



AEDC-?A-85-64 

OBOUN is a namelist read in subroutine ODATA and contains the specifications to be 
used to  define the outer boundary of mesh M for the purpose of locating suitable 
interpolation stends in other grids. The parameters are 

IOBTYP(M) mag specifying topology and type of outer b u n -  
dary; currently acceptable values are 

1 IO-Warped spherical surface given by L 
= constant and J along lines of 
longitude; 

I2O-Warped hemispherical surface as 
above with base at JOYM); 

130-Warped hemispherical mface with 
open base at  J02(M); 

210-Warped cylindrical surface given by 
L = constant and K the cylinder axis; 
both end surface; are included 

220-Warped cylindrical surface as above 
with open end at K = KOI(M) 

Dimension: MDIM 
Default: 0 

JOl(M) 
KO1 (M) 
LO1 (M) 
502  (M) 
KO2 (M) 
LO2 (M) 

Ranges of indices defining surface; those ending 
with 1 are initial value and those ending with 2 are 
final value of index; their significance depends on 
IOBTYP (M). Typical values are 
IOBTYP = 110 JOI(M) = 1 J02(M) = JMAX 

120KOI(M) = 1 K02(M) = KMAX 
LOl(M) = 1 L02(M) = LO 

where 

LO < LMAX 
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BINARY OUTPUT FILES 

21OJ31(M) = 1 JOZ(M) = JMAX 
uOKOl(M) = K1 KOYM) = K2 

LOl(M) = 1 LO2(M) = L.2 

where 

K1, K2 e[Z,KMAX] and 
U e LMAX 

PEGSUS generates two output files for input to XMER3D. They are the composite 
mesh, and the interpolation and bookkeeping data. The data on these fdes are organized by 
grid to facilitate separation into individual working files. The formats for each are described 
in the following subsections. 

This file is written on unit 1 .  Each grid is written separately. 

Record Number FOm8t 

1 MESH, JMAX, KMAX, LMAX 

2 (((X(J,K,L), J = 1, JMAX), K = 1 ,  KMAX), L = 1 ,LMAX). 

(((Y(J,K,L), J = 1, JMAX), K = 1,  KMAX), L = 1 ,LMAX), 

(((Z(J,K,L), J = 1, JMAX), K = 1, KMAX), L = 1 ,LMAX). 

MESH = 2, 3, .... 

Interpolation and Bookkeeping Dpta File 

This file is written to unit 2. The data for each grid are written separately. 

Record Number Format 

1 IBPNTS, IIPNTS, IIEPTR. IlSPTR 
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(JI(I), KI( I), LI(I), DXINT( I),DY INT( 1) 

DIINT(I), I = 1, IIPNTS) 

(JMI), KW). L W ,  IBC(I), I =  1, IBPNTS) 

(((IBLANK(J,K,L), J = i,JMAX), 

K= I,KMAX),L= 1,LMAX) 

MESH = 2. 3, .... 
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HIERCY 

SEARCH 

r------- 1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Format 

10A8 

Namel ist 

Namel ist 

Su brou t i ne 

IXITIA 

INITIA 

INITIA 

Namelist RGRID i 
I 
I 

I 
I 
I 
I 
I 

I Note: There is a separate GRn?ZU 
for each component mesh. 

CKPLOT 0 
HBOUN 0 

Namel ist 

Name1 i s t  

OBOUN Name 1 i s t 

CHKPLT 

HDATA 

ODATA 

Fig:::L I;-I. Input data for PEGSUS. 


